Solutions Exam Signals and Systems
 23 januari 2014, 18:30-21:30

Problem 1: signals and spectra

(a) The amplitude of the first signal is clearly 2 . Its period is 2 seconds, so its frequency is 0.5 Hz . Its delay relative to a standard cosine is -1.5π, which corresponds with a phase angle of $\pi / 2$. We conclude $x(t)=2 \cos (\pi t+\pi / 2)$. Similarly, the second signal has amplitude 1 , frequency 2 Hz and phase $\phi=\pi$, so $y(t)=\cos (4 \pi t+\pi)$. Careful inspection of the third plot shows that it is an AM signal that is constructed from the other two plots: $z(t)=x(t) y(t)=2 \cos (\pi t+\pi / 2) \cos (4 \pi t+\pi)$.
(b) We use the inverse Euler formula $\cos (\theta)=\frac{e^{j \theta}+e^{-j \theta}}{2}$.

$$
\begin{aligned}
& x(t)=4 \sin (\pi 10 t)=4 \cos (\pi 10 t-\pi / 2)=2 e^{-j \pi / 2} e^{j \pi 10 t}+2 e^{j \pi / 2} e^{-j \pi 10 t} \\
& y(t)=\cos (\pi 4 t+\pi / 4)=\frac{1}{2} e^{j \pi / 4} e^{j \pi 4 t}+\frac{1}{2} e^{-j \pi / 4} e^{-j \pi 4 t} \\
& z(t)=x(t) y(t)=e^{-j \pi / 4} e^{j \pi 14 t}+e^{j \pi / 4} e^{-j \pi 14 t}+e^{-j 3 \pi / 4} e^{j \pi 6 t}+e^{j 3 \pi / 4} e^{-j \pi 6 t}
\end{aligned}
$$

(c) These plots can be made using the answers from part (b). Make sure that you put labels at the axis (so f in Hz , or rad/s). Also, you need to specify for each frequency component the corresponding phase angle.
(d) When you listen to the signal $x(t)=10 \cos (800 \pi \sin (2 \pi t))$ you will hear a frequency oscillating from 400 Hz to 0 Hz . You will hear something like a siren. The spectrogram is in the following figure.

Problem 2: LTI-systems

(a) Note that $\cos \left(2 \pi(n+1)-\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)$ since n is integer. So,

$$
\begin{aligned}
& y_{0}[n]=x[n] \cdot x[n-1]+\cos \left(\frac{\pi}{3}\right) \\
& y_{1}[n]=x[n-1]+x[n]+x[n-1]
\end{aligned}
$$

Now we see that both systems are causal, since they use only sample locations of the type $n-k$, where k a natural number. The first system is not linear due to $x[n] \cdot x[n-1]$, while the second is linear (in fact, it is a standard FIR filter). Both signals are time invariant.
(b) The impulse response is the output of feeding the system with $\delta[n]=u[n]-u[n-1]$, so the answer is simply (using linearity of FIR systems):

$$
[3,4,8,9,14]-[0,3,4,8,9]=[3,1,4,1,5]
$$

(c) The convolution of $[1,-1,-2]$ and $[0,4,2,0,-4,-2]$ yields $[0,4,-2,-10,-8,2,10,4]$.
(d) There are many ways to answer this question. Probably the simplest is the following reasoning. If $y=h * x$, then $|y|=|h|+|x|-1$, so if we want the filter kernel h_{4} to undo the work of h_{3}, then it needs to have a negative length, which is impossible.
(e) Using the reasoning that $|y|=|h|+|x|-1$, we know that $|h|=5$. We compute the convolution of $[a, b, c, d, e]$ with x and find:

$$
[a, b, c, d, e] *[1,-1,-2]=[a, b-a, c-b-2 a, d-c-2 b, e-d-2 c,-e-2 d,-2 e]
$$

Since this must be equal to $[0,3,-2,-2,-5,-12,-4]$ we conclude $a=0, b=3, c=1, d=5$, and $e=2$. So, $h_{5}=[0,3,1,5,2]$.
(f) It is indeed possible to build the FIR-system F_{3} by connecting the first four elements, since

$$
[0,4,2,0,-4,-2]=[0,1] *[1,-1] *[2,2,2] *[2,1]=c_{0} * c_{1} * c_{2} * c_{3}
$$

Problem 3: z-transforms

(a) $H(z)=1-2 \cos (\hat{\omega}) z^{-1}+z^{-2}$ and $H\left(e^{j \omega}\right)=1-2 \cos (\hat{\omega}) e^{-j \omega}+e^{-j 2 \omega}$
(b) The signal $x[n]=A \cos (n \hat{\omega}+\phi)$ will result in an output which is zero everywhere if $H\left(e^{j \hat{\omega}}\right)=0$, which is indeed the case:

$$
1-2 \cos (\hat{\omega}) e^{-j \hat{\omega}}+e^{-j 2 \hat{\omega}}=e^{-j \hat{\omega}}\left(e^{j \hat{\omega}}-2 \cos (\hat{\omega})+e^{-j \hat{\omega}}\right)=e^{-j \hat{\omega}}(2 \cos (\hat{\omega})-2 \cos (\hat{\omega}))=0
$$

(c) We use linearity, and treat the terms separately. The DC-term is removed by a first difference, i.e. $h_{0}=[1,-1]$. From part (b) we know that the other two filters are $h_{1}=\left[1,-2 \cos \left(\frac{\pi}{3}\right), 1\right]=\left[1, \frac{1}{2}, 1\right]$ and $h_{2}=\left[1,-2 \cos \left(\frac{\pi}{4}\right), 1\right]=\left[1, \frac{1}{2} \sqrt{(2)}, 1\right]$. The total system is

$$
\left.h=h_{0} * h_{1} * h 2=[1,-1] *\left[1, \frac{1}{2}, 1\right] *\left[1, \frac{1}{2} \sqrt{(} 2\right), 1\right]
$$

Another solution is the following. Choose $h_{1}=[1,1,1,1,1,1]$ (a six-point averager) and $h_{2}=$ $[1,1,1,1,1,1,1,1]$ (a 8-point averager). Again, the answer is $h=h_{0} * h_{1} * h 2$. This filter works as well, but is less specific.
(d) We consider a connected system that is composed of four FIR systems S_{1}, S_{2}, S_{3} and S_{4}.

The impulse responses are $h_{1}=[1,1], h_{2}=[1,0,-1], h_{3}=[0,0,0,2]$ and $h_{4}=[0,1,0,1]$. The overall system (using linearity) is thus:

$$
h=\left(h_{1}+h_{2}\right) * h_{3}+h_{4}=[0,1,0,5,2,-2]
$$

So, we find

- system function: $H(z)=z^{-1}+5 z^{-3}+2 z^{-4}-2 z^{-5}$
- frequency response: $H\left(e^{j \omega}\right)=e^{-j \omega}+5 e^{-j 3 \omega}+2 e^{-j 4 \omega}-2 e^{-j 5 \omega}$
- impulse response: $h[n]=\delta[n-1]+5 \delta[n-3]+2 \delta[n-4]-2 \delta[n-5]$
- difference equation: $y[n]=x[n-1]+5 x[n-3]+2 x[n=4]-2 x[n-5]$

Problem 4: Fourier analysis

(a) According to the Fourier synthesis formula (using $T_{0}=1 / 2$):

$$
\begin{aligned}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j 4 \pi k t}=4 e^{-12 \pi t}+2 e^{-j \pi / 4} e^{-j 4 \pi t}+5 e^{0}+2 e^{-j \pi / 4} e^{j 4 \pi t}+4 e^{-12 \pi t} \\
& =5+4 \cos (2 \pi 2 t+\pi / 4)+8 \cos (2 \pi 6 t)
\end{aligned}
$$

So, $D C=5, A=4, f_{0}=2, \phi_{0}=\pi / 4, B=8, f_{1}=6$, and $\phi_{0}=0$.
(b) We can read the Fourier coefficients directly from the formula. However, we first need to determine the fundamental frequency $f_{0}=\operatorname{gcd}(6,9)=3 \mathrm{~Hz}$. So, the cases are $k=0, k= \pm 2$ and $k= \pm 3$.

$$
a_{k}= \begin{cases}\frac{3}{2} e^{-j \pi / 2} & \text { for } k=-3 \\ 1 & \text { for } k \in\{-2,0,2\} \\ \frac{3}{2} e^{j \pi / 2} & \text { for } k=3 \\ 0 & \text { for all other } k\end{cases}
$$

(c) According to the Fourier analysis formula we find:

$$
a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j\left(2 \pi / T_{0}\right) k t} d t=\frac{1}{T_{0}} \int_{a T_{0}}^{b T_{0}} e^{-j\left(2 \pi / T_{0}\right) k t} d t-\frac{1}{T_{0}} \int_{c T_{0}}^{d T_{0}} e^{-j\left(2 \pi / T_{0}\right) k t} d t
$$

For the DC -term (i.e. $k=0$ and hence $e^{-j\left(2 \pi / T_{0}\right) k t}=1$) this reduces to:

$$
a_{0}=\frac{1}{T_{0}} \int_{a T_{0}}^{b T_{0}} 1 d t-\frac{1}{T_{0}} \int_{c T_{0}}^{d T_{0}} 1 d t=\frac{1}{T_{0}}\left(b T_{0}-a T_{0}-d_{T} 0+c T_{0}\right)=b+c-a-d
$$

For other k we find:

$$
a_{k}=\frac{1}{T_{0}}\left[\frac{e^{-j\left(2 \pi / T_{0}\right) k t}}{-j\left(2 \pi / T_{0}\right) k}\right]_{t=a T_{0}}^{t=b T_{0}}-\frac{1}{T_{0}}\left[\frac{e^{-j\left(2 \pi / T_{0}\right) k t}}{-j\left(2 \pi / T_{0}\right) k}\right]_{t=d T_{0}}^{t=c T_{0}}
$$

Substitution and some trivial calculus leads to:

$$
a_{k}=\frac{-1}{j 2 \pi k}\left(e^{-j 2 \pi k b}-e^{-j 2 \pi k a}+e^{-j 2 \pi k c}-e^{-j 2 \pi k d}\right)
$$

(d) We can use the answer from (c), using $a=0, b=c=\frac{1}{2}$ and $d=1$. We thus arrive at $a_{0}=$ $b+c-a-d=0$ and (for $\mathrm{k} \neq 0) a_{k}=\frac{-1}{j 2 \pi k}\left(e^{-j \pi k}-e^{0}+e^{-j \pi k}-e^{-j 2 \pi k}\right)=\frac{-1}{j 2 \pi k}\left(2(-1)^{k}-2\right)$ For k even, this is equal to zero, while for k odd we find $a_{k}=\frac{-1}{j 2 \pi k}(2(-1)-2)=\frac{2}{j \pi k}$.
(e) The periodic signal $y(t)$ (with period 6 sec .) can be rewritten as the sum of the signals $x(t)$ and $s(t)$, where we choose in the formula for $s(t)$ the parameters $a=\frac{1}{6}, b=\frac{2}{6}, c=\frac{4}{6}$, and $d=\frac{5}{6}$. The Fourier coefficients of the signal $y(t)$ can therefore (using linearity) be found by adding the answer found by (c) and (d). So, $a_{0}=\frac{2+4-1-5}{6}=0$ and (for $k \neq 0$)

$$
a_{k}=\frac{-1}{j 2 \pi k}\left(2(-1)^{k}-2+e^{-j \frac{2}{3} \pi k}-e^{-j \frac{1}{3} \pi k}+e^{-j \frac{4}{3} \pi k}-e^{-j \frac{5}{3} \pi k}\right)
$$

